
1 Parametric generalized linear models for count data

R libraries and functions used in this chapter include:

library(MASS) #for fitting negative-binomial models

library(mpcmp) #taken off CRAN, but can download last version as local .ZIP file

glm #fitting generalized linear models (GLMs) in base R

glm.nb{MASS} #fitting negative-binomial GLMs in R

glm.cmp{mpcmp} #fitting mean-parametrized Conway-Maxwell-Poisson GLMs in R

histcompPIT{mpcmp} #probability inverse transform (PIT) histogram for fitted glm.cmp models

1.1 Introduction to generalized linear models

When one thinks about regression, one typically thinks of a model of the form

Yi |Xi = XT
i β + ϵi , i = 1,2, . . .

Usually implicit in the above model statement are four assumptions:

0. the observations Yi are independent (given the Xs)

1. the conditional mean E(Y |X) is linear in X

2. the errors ϵi (and therefore the Yis) have constant variance

3. the errors ϵi (and therefore the Yis) are normally distributed

Thus, a more transparent way to write the above model would be

Yi |Xi
ind∼ N (XT

i β,σ
2) .

Discuss the applicability of the above assumptions for the following two examples.

Example 1. In a fitness study, a hundred gym-goers were asked how many times they ran during past
the week. The results, plotted against age of the respondent, are given below.
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A1. Counts cannot be negative. This means that E(Y |X) should generally not be modeled by a linear
function. One way to do this is to model the conditonal mean µ ≡ E(Y |X) via

µ = exp
(
XT β

)
⇔ XT β = log(µ).

This ensures that µ is always nonnegative.
Note: we apply the log transformation to the conditional mean µ ≡ E(Y |X), and not to the data them-
selves (we cannot take the log of a zero count!). This transformation linking the conditional mean
E(Y |X) to the linear predictor XT β is called the link function.
A3. The responses (integer counts, with possible repeats) cannot possibly come from a normal dis-
tribution. Rather, it makes more sense to use a Poisson distribution. A reasonable model here would
be

Yi |Xi
ind∼ Poisson

(
µi = exp(XT

i β)
)

A2. Recall that for a Poisson random variable, the variance is

Var(Yi |Xi) = µi = exp(XT
i β) ,

which is not constant. The variability of the responses increases with its mean.

Example 2. In a health study, a hundred patients were tested for their cholesterol levels and the pres-
ence of a certain disease. The results are plotted below.
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Disease status vs. cholesterol levels

A1. The expected value of Y given X (which is also the conditional probability p of success given X)
cannot be smaller than 0 or larger than 1. This means that E(Y |X) should generally not be modeled by
a linear function. One way to do this is to model the conditional probability of success given X via

p =
exp(XT β)

1 + exp(XT β)
⇔ XT β = log

(
p

1− p

)
= logistic(p) = logit(p)
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This ensures that p is always between 0 and 1.
Note again that we apply the transformation to the conditional mean p ≡ E(Y |X), and not to the

data themselves (we cannot apply the logistic function to 0s and 1s!). The link function here is the
logistic-link.
A3. The responses (zeros and ones, successes and failures) cannot possibly come from a normal distri-
bution. Rather, it makes more sense to use a Bernoulli distribution. A reasonable model here would
be

Yi |Xi
ind∼ Bernoulli

(
pi =

exp(XT
i β)

1 + exp(XT
i β)

)
A2. Recall that for a Bernoulli random variable, the variance is

Var(Yi |Xi) = pi(1− pi) =
exp(XT

i β)

(1 + exp(XT
i β))2

,

which is not constant. The variability of responses with probabilities close to 1 or 0 is smaller than the
variability of responses with probabilities around 0.5

We have briefly considered models of the form

Yi |Xi
ind∼ N (XT

i β,σ
2)

Yi |Xi
ind∼ Poisson(µi = exp(XT

i β))

Yi |Xi
ind∼ Bernoulli

(
pi =

exp(XT
i β)

1 + exp(XT
i β)

)
.

While we can conceivably think of (infinitely) more models using ad-hoc distributions, we will gener-
ally have to examine the properties of and construct new algorithms for each new model we come up with.
Fortunately, there is something special about the normal, Poisson, and Bernoulli distributions, along
with other commonly used distributions, that allow them to fall into a unified modelling framework
called generalized linear models (GLMs). GLMs extend classical linear models to data from a wider class
of distributions. Usually, these distributions form an exponential family of distributions.

1.2 Exponential Families of Distributions

A random variable Y whose distribution depends on a single parameter θ belongs to an exponential
family if it has a probability (density) function of the form

f (y;θ) = exp
{
a(y)b(θ) + c(θ)

e(φ)

}
d(y;φ) (1)

where a(·), b(·), c(·), d(·) and e(·) are specified functions, and φ is a dispersion parameter that is related to
the variance of the distribution.

• If b(θ) = θ, distribution is in canonical (or natural) form.
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• If a(y) = y, then b(θ) is called the natural (or canonical) parameter of the distribution and the
family is called a linear exponential family

• The function c(θ) is a normalizing function (to ensure the probabilities sum to 1).

• d(y;φ) is a base measure, which determines the shape of the family of distributions.

• φ is regarded as a nuisance parameter and sometimes treated as known or given.

1.2.1 The Binomial distribution as an exponential family

Consider a series of n independent binary trials, each with only two possible outcomes: ’success’ or
’failure’ with success probability, p. Let Y be the number of ’successes’ in these n trials; then Y has the
Binomial(n,p) distribution with probability function

f (y;p) =

 n

y

py(1− p)n−y .

This can be rewritten as

f (y;p) = exp
{
y logp − y log(1− p) +n log(1− p)

}
×
 n

y


This belongs to the linear exponential family with a(y) = y, natural parameter b(p) = log

(
p

1−p

)
, normal-

izing function c(p) = −n log(1 − p), and with dispersion parameter e(φ) = φ =≡ 1. Note that the base
measure d(y) =n Cy is essentially the binomial distribution with p = 0.5.

The binomial distribution is usually used to model counts from a process with binary outcomes. For
example:

• The number of candidates from a class who pass a test

• The number of patients in a medical study who are alive at a specified time since diagnosis

1.2.2 The Poisson distribution as an exponential family

The probability mass function for random variable Y ∼ Poisson(λ) is

f (y;λ) =
λye−λ

y!
, y = 0,1,2, · · ·

This probability function can be rewritten as

f (y;λ) =

=

= exp
{
y logλ−λ

}
× 1/y!.

Because a(y) = y, f (y;λ) is in the canonical form with natural parameter is logλ normalizing function
is c(λ) = −λ, and dispersion e(φ) = φ ≡ 1. Note that the base measure is 1/y! which is essentially the
Poisson pmf with λ = 1.
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The Poisson distribution is often used to model count data, which are typically the number of occur-
rences of some event in a defined time period or space. For example, it can be used to model

• The number of medical conditions reported for a person.

• The number of tropical cyclones during a season.

• The number of spelling mistakes on a page of a newspaper.

1.2.3 The negative-binomial distribution as an exponential family

The negative-binomial distribution is an extension of the Poisson distribution that allows the variance
to be larger than the mean. It has pmf given by

f (y;θ) =

 y + r − 1
r − 1

θr(1−θ)y , y = 0,1,2, . . . ,

where the size parameter r is typically fixed and θ is the parameter of interest.

Homework: for fixed r, show that the negative-binomial distribution is an exponential family, and find
its natural statistic a(y), canonical parameter b(θ), dispersion function e(r), normalizing function c(θ)
and base measure d(y;r).

1.3 Generalized Linear Models

Generalized linear models consist of three components:

1. Response variables Y1, · · · , Yn have distributions from the same exponential family:

fYi (y;θi) = exp
{
a(y)b(θi) + c(θi)

e(φ)

}
d(y;φ)

2. A set of covariate vectors X1, · · · , Xn and associated set of parameters β0, · · · , βd forming linear
predictors XT

i β for each observation i.

3. A link function g(·) such that
g(µi) = X⊤i β,

where µi = E(Yi).

A link function g(·) is called a canonical link if g(µi) = b(θi). Canonical links include:

• Normal: g(µ) = µ;

• Poisson: g(µ) = log(µ) = log(λ) (note that µ = λ for Poisson);

• Binomial: g(µ) = log
(

µ
1−µ

)
= log

(
p

1−p

)
(note that µ = p for Bernoulli);

Canonical links are natural choices of link functions (but not always the most appropriate). They are
also the default links in R. Other choices are possible: for example, the log-link is not the canonical
link for the negative-binomial distribution, but it is by far the most commonly used link for its inter-
pretability.
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1.4 Models for Binomial counts

We first consider generalized linear models for response variables that are measured on a binary scale.
That is, the response variable has only two possible outcomes, and can be represented by a binary
indicator variable taking on values 1 and 0. ‘Success’ and ‘failure’ are used as generic terms for the two
outcomes.

For example,

• In an analysis of whether or not business firms have an industrial relations department according
to the size of firm.

• In a study of labor force participation of married women, as a function of age, number of children
and husband’s income

• In a health study, the presence of a certain disease as a function of gender and cholesterol level.

If Yi are binary with P (Yi = 1|Xi) = pi and P (Yi = 0|Xi) = 1−pi , then µi = E(Yi |Xi) = pi . We want to model
the probability of success pi in terms of explanatory variables Xi via some link function:

g(pi) = X⊤i β

The following three link functions are commonly used for binary response variables:

• Logistic (or logit) models

log
(

pi
1− pi

)
= X⊤i β or pi =

exp(X⊤i β)

1 + exp(X⊤i β)

• Probit models
Φ−1(pi) = X⊤i β or pi = Φ(X⊤i β)

where Φ is the standard normal cumulative distribution function

• Complementary log-log models

log(− log(1− pi)) = X⊤i β or pi = 1− exp[−exp(X⊤i β)]

The most popular of these is the logistic link, because it is the easiest to interpret.

Note that the binary (0–1) nature of the responses is handled by the Bernoulli distribution, while the
covariates determine the mean of the distribution:

Yi |Xi
ind∼ Bernoulli

(
pi = µ(XT

i β)
)

where µ(·) = g−1(·) is the inverse-link, or equivalently, the mean function. I am much better at thinking
on the mean scale, so I prefer working with µ(·) rather than the link.
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1.4.1 Parameter interpretation for logistic models

The logistic link is perhaps the easiest to interpret, and hence it is the most widely used. In particular,
the interpretation of β is somewhat similar to that in a normal linear regression model.

Consider a logistic model with two covariates x1 and x2:

log
(

p

1− p

)
= β0 + β1x1 + β2x2

Then, a unit change in x1 (keeping x2 fixed) is associated with an increase in the log-odds by β1. Equiv-
alently, a unit change in x1 is associated with a change in the odds by a factor of exp(β1). Recall that the
odds is defined as p/(1− p), the relative probability of success over failure.

Similarly, a unit change in x2 (keeping x1 fixed) is associated with an increase in the log-odds by an
amount β2, or, equivalently, a change in the odds by a factor of exp(β2).

The interpretation of the intercept β0 is the log-odds when both x1 and x2 are zero. Equivalently,
p = exp(β0)/(1+exp(β0)) is the probability of success at baseline, when all covariates are zero. This may
or may not have a meaningful interpretation

Example (2. continued). Recall that in our health study, 100 patients were tested for their cholesterol
levels and the presence of heart disease. The overall prevalence of heart disease in the study was 53%
for male patients and 38% for female patients.

A preliminary logistic model fitted to this dataset is

log
(

p̂

1− p̂

)
= −9.3207− 0.1095 ∗ I(sex = male) + 1.5843 ∗ cholesterol

Interpret the intercept and slope(s) of the fitted model:
Intercept: the estimated intercept is -9.3207, which means that the probability of disease at baseline
(female, cholesterol=0) is estimated as

exp(−9.3207)
1 + exp(−9.3207)

= 8.95× 10−5

This is not actually meaningful, because a female with cholesterol level 0 would be probably dead.

Slope for cholesterol: the estimated slope for cholesterol is 1.5843, which means that a unit increase in
cholesterol levels (for the same gender) is associated with an increase in log-odds of disease by 1.5843,
or, equivalently, an increase in the odds by a factor of exp(1.5843) = 4.88 times.

Slope for sex: the estimated slope for sex is -0.1095, which means that males are estimated to have lower
log-odds of disease by 0.1095 than females (having the same cholesterol level). Equivalently, their odds
of disease is exp(−0.1095) = 0.90 times smaller. This may seem counter-intuitive, but remember, this
comparison between sex is for fixed cholesterol levels. Thus, it may well be sensible that a female with
the same (high) level of cholesterol as a male is more at risk to disease, because it is more uncommon
for females to have (high) cholesterol levels in the first place.
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1.4.2 Estimation of parameters

For Yi ∼ Bernoulli(pi), the probability of observing value Yi = yi is

p
yi
i (1− pi)1−yi

If we have a dataset of n independent binary responses, each having probability pi of success, the
probability of observing Y1 = y1,Y2 = y2, . . . ,Yn = yn is therefore

n∏
i=1

p
yi
i (1− pi)1−yi

The log-likelihood function for β is therefore given by

l(β) =
n∑
i=1

log
(
p
yi
i (1− pi)1−yi

)
=

n∑
i=1

log
(
p
yi
i

)
+ log

(
(1− pi)1−yi

)
=

n∑
i=1

yi log(pi) + (1− yi) log(1− pi) ,

keeping in mind that pi = µ(XT
i β) for some mean function µ.

We can now find the maximum likelihood estimate of β by maximizing l(β) in β. To do this, we can set
the derivative ∂l/∂β to 0:

0 =
∂l(β)
∂β

=
n∑
i=1

yi
∂
∂β

log(pi) + (1− yi)
∂
∂β

log(1− pi)

=
n∑
i=1

yi
∂
∂pi

log(pi)
∂pi
∂β

+ (1− yi)
∂
∂pi

log(1− pi)
∂pi
∂β

=
n∑
i=1

yi
1
pi
µ′(XT

i β)Xi − (1− yi)
1

1− pi
µ′(XT

i β)Xi

=
n∑
i=1

[
yi

1
pi
− (1− yi)

1
1− pi

]
µ′(XT

i β)Xi

=
n∑
i=1

[
yi − pi

pi(1− pi)

]
µ′(XT

i β)Xi ,

keeping in mind that pi = µ(XT
i β). Thus, solving for the MLE β̂ is a nonlinear root-finding problem.

Fortunately, there is a universal algorithm that can be used to find the MLE in any GLM, using a
Newton-Raphson procedure with iteratively reweighted least squares.
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To see this, note that the score equation has the form

0 =
n∑
i=1

yi −µi
Var(Yi)

µ′(XT
i β)Xi (2)

where µi = pi = µ(XT
i β) is the mean of Yi and Var(Yi) = pi(1− pi) is the variance of Yi . Don’t forget that,

in general, both µi and Var(Yi) may be functions of β. We can compare this to the score equations for
normal linear regression:

0 =
n∑
i=1

(
yi −XT

i β
)
Xi ⇔ 0 =

n∑
i=1

yi −XT
i β

σ2 Xi .

Thus in a normal linear model, µ(XT
i β) = XT

i β is the identity link so that µ′(·) = 1. This has the same
form as (2), which suggests that the score equations for any GLM have the same form as (2).

An algorithm for fitting GLMs

The score equation (2) naturally suggests an algorithm for computing the MLE β̂. Suppose we have an
initial estimate β(0) of β. Then, we have an initial estimate µ′(0) ≡ µ′(XT

i β
(0)) of µ′(XT

i β) and an initial

estimate V
(0)
i of Var(Yi). The score equation (2) can then be approximated by

0 =
n∑
i=1

yi −µ(XT
i β)

V
(0)
i

µ′(0)Xi .

Next, a linearization in β around β(0) gives

0 =
n∑
i=1

yi −µ(XT
i β

(0))

V
(0)
i

µ′(0)Xi −
n∑
i=1

µ′(XT
i β

(0))

V
(0)
i

µ′(0)XiX
T
i (β − β(0))

Thus, if we write

U(0) =
n∑
i=1

yi −µ(XT
i β

(0))

V
(0)
i

µ′(0)Xi ,

and

I(0) =
n∑
i=1

(µ′(0))
2

V
(0)
i

XiX
T
i ,

then we have a one-step update for β as

β(1) = β(0) + I−1
(0)U(0)

We iterate these updates until there is minimal change in β.

Note that I is equal to −E(∂2l(β)/∂β∂βT ), which is the Fisher information matrix. For this reason, the
above algorithm is also called Fisher-scoring.

Fortunately, we don’t need to do these updates by hand. Computer software are very efficient in com-
puting the MLE for GLMs, usually taking only a handful of iterations and a fraction of a second.
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1.4.3 Standard errors and inferences

Estimation of parameters is only half the story in statistics. The other (and possibly more important)
half is to quantify the precision of estimates and to make inferences on model parameters.

It can be shown that for large sample size n, β̂ is asymptotically normal in distribution with mean β∗,
and its covariance matrix is approximately:

cov(β̂) ≈ I−1(β∗) , the Fisher information evaluated at true β∗

In practice, we don’t know β∗ so we use the estimated Fisher information evaluated at the estimate β̂:

I (β̂) =
n∑
i=1

(µ′(XT
i β̂))2

V̂ar(Yi)
XiX

T
i .

(Marginal) confidence intervals for each βj can then be obtained by the usual

β̂j ± zα/2ŝe(β̂j)

where ŝe(β̂j) =
√
I−1(β̂)jj , the square root of the jth diagonal component of I−1(β̂). These confidence

intervals will have approximately (1−α)100% coverage even for moderate sample sizes.

Example (2. continued). We demonstrate a full analysis of the disease and cholesterol dataset:

disease = c(rep(0,55), rep(1,45))

sex = c(rep(0,34), rep(1,21), rep(0,21),rep(1,24))

cholesterol = c(5.25, 5.03, 6.17, 5.32, 5.92, 5.88, 4.68, 6.56, 6.26, 4.68,

5.55, 5.29, 5.12, 4.74, 5.37, 5.49, 5.00, 5.17, 4.83, 6.06,

5.06, 5.53, 5.14, 4.59, 5.22, 4.95, 5.05, 5.06, 5.40, 4.60,

5.86, 6.16, 4.96, 4.82, 5.68, 6.51, 4.82, 5.00, 6.49, 5.76,

5.35, 5.89, 5.16, 6.14, 6.27, 5.69, 4.76, 5.58, 5.26, 5.87,

5.31, 6.30, 6.45, 5.27, 5.96, 5.03, 5.72, 5.66, 4.59, 5.19,

6.37, 5.46, 6.89, 5.02, 6.78, 5.87, 6.24, 6.85, 6.46, 5.04,

5.89, 7.00, 6.47, 6.43, 4.87, 5.45, 6.74, 5.00, 4.78, 6.91,

6.29, 6.23, 6.58, 5.98, 5.81, 6.75, 6.65, 6.19, 6.44, 6.96,

6.91, 6.95, 6.12, 5.62, 6.85, 6.06, 6.08, 6.98, 6.89, 6.53)

fit1 = glm(disease∼sex+cholesterol, family=binomial)

summary(fit1)

The default output is:

Call:

glm(formula = disease ˜ gender + cholesterol, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max
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-1.6566 -0.8626 -0.5394 0.8735 2.0831

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.3207 2.1703 -4.295 1.75e-05 ***

sex -0.1095 0.4873 -0.225 0.822

cholesterol 1.5843 0.3834 4.132 3.59e-05 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Observations: We see that cholesterol level has a strongly significant effect on disease probability, but
the effect of gender is not significant given the cholesterol levels. A simpler model would therefore be
one in which males and females have the same probability of disease given their cholesterol levels:

fit0 = glm(disease∼cholesterol, family=binomial)

summary(fit0)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.202 2.098 -4.385 1.16e-05 ***

cholesterol 1.555 0.359 4.331 1.48e-05 ***

An approximate 95% confidence interval for the slope of cholesterol is

1.555± 1.96× 0.359 = (0.85,2.26)

We can therefore be 95% confident that a unit increase in cholesterol is associated with an increase in
the odds of disease of between exp(0.85) = 2.34 and exp(2.26) = 9.58 times.

The final fitted mean model looks like this:
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1.4.4 Models for Binomial counts

In experimental studies, we often apply treatments (covariates) to groups of units and count the total
number of successes in that group. Note that the number of units in each group may be different. If the
units within each group behave independently, we have binomial data instead of Bernoulli data. This
poses no additional problem though, as the loglikelihood is exactly the same, except for an additive
constant not involving β.

Example (3. Insecticide effectiveness). The following table shows the numbers of dead beetles after
five hours exposure to gaseous carbon disulphide at various concentrations (data from Bliss 1935):

Dose, xi (log10CS2mgl−1) Number of beetles, ni Number killed, yi
1.6907 59 6
1.7242 60 13
1.7552 62 18
1.7842 56 28
1.8113 63 52
1.8369 59 53
1.8610 62 61
1.8839 60 60

To fit a logistic model to these data in R, we encode the vector of dose as before, but we combine the
success and failure counts into two columns in a response matrix:

dose = c(1.6907, 1.7242, 1.7552, 1.7842, 1.8113, 1.8369, 1.8610, 1.8839)

killed = c(6,13,18,28,52,53,61,60)

notkilled = c(53,47,48,28,11,6,1,0)

response = cbind(killed, notkilled)

fit = glm(response ∼dose, family=binomial)

summary(fit)

The default R output is

Call:

glm(formula = response ˜ dose, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.5098 -0.4385 0.9158 1.2845 1.5895

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -61.249 5.206 -11.76 <2e-16 ***

dose 34.555 2.926 11.81 <2e-16 ***

---
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 288.940 on 7 degrees of freedom

Residual deviance: 12.141 on 6 degrees of freedom

AIC: 42.363

Number of Fisher Scoring iterations: 4

Conclusion: For each 0.01 unit increase in dosage, the odds of killing a beetle increases by an estimated
exp(0.3456) = 1.41 times. A 95% confidence interval for this increase is between exp(0.3456 − 1.96 ×
0.02926) = and exp(0.3456 + 1.96× 0.02926) = times.

1.5 Models for unbounded counts

In this section, we consider generalized linear models (GLMs) in which the response variables are
nonnegative counts with no fixed upper bound. For example,

• In an insurance risk analysis, the number of claims over a given period of time as a function of
insurance type and value of insured items.

• In a radiation study, the number of particles each second as recorded by a Geiger counter as a
function on temperature and humidity.

• In behavioural studies, counts of incidents in a given time interval as a function of cognitive
measurements.

The most popular (and arguably most natural) link function used for count response variables is a
log-linear model,

log(µi) = X⊤i β or µi = exp(X⊤i β)

This generates a mean-model that is nonnegative for any covariate value X and any parameter value β.
The log-link is also the default link in R for count data, regardless of the discrete family used.

The second most popular link function for count data is a linear model,

µi = X⊤i β

This is usually valid only over a narrow range of X’s and only some values of β.

Comment: While a linear mean model may be a good enough fit to a particular dataset, there is a
philosophical concern that the model is not a valid model for data that we could have observed but
did not happen to observe. Moreover, over a narrow range of X’s, an exponential mean curve is often
indistinguishable from a linear mean curve. For these reasons, I tend to always use the log-link.
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1.5.1 Poisson regression models

The count nature (0,1,2,3,. . . ) of the responses is typically handled by the Poisson distribution, while the
covariates determine the mean of the distribution:

Yi |Xi
ind∼ Poisson

(
µi = exp(XT

i β)
)

Note that the Poisson model necessarily assumes that the conditional variance Var(Yi |Xi) is identical to
the conditional mean µi for each observation. This may be too restrictive in some applications.

1.5.2 Parameter interpretation for log-linear models

The log-linear model is easier than the logistic model to interpret. In particular, the interpretation of β
is very similar to that in a normal linear regression model.

Consider first a log-linear model with two covariates x1 and x2:

log(µi) = β0 + β1x1 + β2x2

Then, a unit change in x1 (keeping x2 fixed) is associated with a change in the mean by a multiplicative
factor of exp(β1) times.

Similarly, a unit change in x2 (keeping x1 fixed) is associated with a change in the mean by a multi-
plicative factor of of exp(β2) times.

The interpretation of the intercept β0 is that the response mean when all covariates are at baseline is
exp(β0). Again, this may or may not have a meaningful interpretation

Example (4. Mine injuries). Myers et al. (2010, pp. 181–183) describe a dataset on the number of
injuries or fractures that occur in the upper seam of coal mines in West Virginia. A total of 44 ob-
servations were collected on mines in this area. In fitting a Poisson GLM to these data, Myers et al.
(2010) found that three variables, namely, the inner burden thickness in feet (X1), percent extraction
of the lower previously mined seam (X2), and time that the mine has opened (X3), were important in
explaining the number of injuries. The fitted mean model is

µ̂ = exp(−3.2707− 0.0015X1 + 0.0627X2 − 0.0317X3)

Interpret the intercept and slope(s) of the fitted model:

Intercept: the estimated intercept is -3.2707, which implies that the mean number of injuries at baseline
( ) is estimated to be

exp(−3.2707) = 0.038

This is not actually meaningful, because a mine with zero inner burden thickness is not really a mine...

Slope for X1: the estimated slope for X1 is -0.0015, which implies that an increase in inner bur-
den thickness by a foot is associated with a reduction in the mean number of injuries by a factor of
exp(−0.0015) = 0.999 times.
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Slope for X2: the estimated slope for X2 is 0.0627, which implies that an increase in extraction by 1% is
associated with an increase in the mean number of injuries by a factor of exp(0.0627) = 1.065 times.

Slope for X3: the estimated slope for X3 is -0.0317, which implies that a mine that is one year older is
expected to have fewer mean number of injuries by a factor of exp(−0.0317) = 1.032 times.

1.5.3 Parameter estimation for Poisson regression

If we have a dataset of n independent Poisson responses, each having mean µi , the probability of ob-
serving Y1 = y1,Y2 = y2, . . . ,Yn = yn is

n∏
i=1

µ
yi
i

yi !
e−µi .

The log-likelihood function for β can then be written as

l(β) =
n∑
i=1

{
yi log(µi)−µi

}
+ constant ,

where µi = exp(XT
i β) for the log-link. We can now find the maximum likelihood estimate of β by

maximizing l(β) in β. To do this, we can set the derivative ∂l/∂β to 0:

0 =
∂l(β)
∂β

= . . . =
n∑
i=1

yi − exp(XT
i β)

exp(XT
i β)

exp(XT
i β)Xi

which is again of the same form as

0 =
n∑
i=1

yi −µi
Var(Yi)

µ′(XT
i β)Xi .

1.5.4 Standard deviations and inferences

For large sample size n, β̂ is asymptotically normal in distribution with mean β∗ and its covariance
matrix is approximately

cov(β̂) ≈ I−1(β∗) , the Fisher information evaluated at true β∗

In practice, we don’t know β∗ so we use the estimated covariance matrix evaluated at the estimate β̂:

I (β̂) =
n∑
i=1

(µ′(XT
i β̂))2

V̂ar(Yi)
XiX

T
i =

n∑
i=1

exp(XT
i β̂)XiX

T
i

(Marginal) confidence intervals for each βj can then be obtained by the usual

β̂j ± zα/2ŝe(β̂j)

where ŝe(β̂j) =
√
I−1
jj (β̂), the square root of the jth diagonal component of I−1(β̂). These confidence

intervals will have approximately (1−α)100% coverage even for moderate sample sizes.
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Example (4, continued). Myers et al. (2010, pp. 181–183) describe a dataset on the number of injuries
(Y ) that occur in the upper seam of coal mines in West Virginia, with covariates being the inner burden
thickness in feet (X1), percent extraction of the lower previously mined seam (X2), and time that the
mine has opened (X3). The complete dataset is given below:

y = c(2,1,0,4,1,2,0,0,4,4,1,4,1,5,2,5,5,5,0,5,1,1,

3,3,2,2,0,1,5,2,3,3,3,0,0,2,0,0,3,2,3,5,0,3)

x1 = c(50,230,125,75,70,65,65,350,350,160,145,145,180,43,42,42,45,83,300,190,145,510,

65,470,300,275,420,65,40,900,95,40,140,150,80,80,145,100,150,150,210,11,100,50)

x2 = c(70,65,70,65,65,70,60,60,90,80,65,85,70,80,85,85,85,85,65,90,90,80,

75,90,80,90,50,80,75,90,88,85,90,50,60,85,65,65,80,80,75,75,65,88)

x3 = c(1,6,1,0.5,0.5,3,1,0.5,0.5,0,10,0,2,0,12,0,0,10,10,6,12,10,

5,9,9,4,17,15,15,35,20,10,7,5,5,5,9,9,3,0,2,0,25,20)

we can fit a log-linear Poisson model via

fit1 = glm(y∼x1+x2+x3, family=poisson)

The summary output is

summary(fit1)

Call:

glm(formula = y ˜ x1 + x2 + x3, family = poisson)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.7727 -0.9073 -0.0107 0.2716 2.1783

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.7206821 0.9788770 -3.801 0.000144 ***

x1 -0.0014793 0.0008244 -1.794 0.072757 .

x2 0.0627011 0.0122711 5.110 3.23e-07 ***

x3 -0.0316514 0.0163095 -1.941 0.052298 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Observations: percentage extraction is a highly significant predictor for the number of mine injuries,
with inner burden thickness and age of the mine being borderline significant.
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1.5.5 Negative-binomial regression models

A generalization of the Poisson model is the negative binomial, which is induced by a scale mixture of
a Poisson(λ) with a gamma rate parameter λ. It can be characterized via:

E(Y ) = µ and Var(Y ) = µ+µ2/ν, where ν > 0 is a dispersion parameter.

Note that the variance is quadratic in the mean. It is always overdispersed compared to the Poisson
distribution, but approaches the Poisson as a limiting case when ν→∞.

Negative binomial regression models can be fit in R via glm.nb from the MASS package.

Example (5. Overdispersed class attendance data). An attendance dataset examines the relationship
between the number of days absent from high school and the gender, maths score (standardized score
out of 100) and academic programme (“General”, “Academic” and “Vocational”) of 314 students sam-
pled from two urban high schools. The dataset is included in the mpcmp package:

library(mpcmp)

data(attendance)

attach(attendance)

library(MASS)

fit1 = glm.nb(daysabs∼gender+prog+math)
summary(fit1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.707484 0.204275 13.254 < 2e-16 ***

gendermale -0.211086 0.121989 -1.730 0.0836 .

progAcademic -0.424540 0.181725 -2.336 0.0195 *

progVocational -1.252615 0.199699 -6.273 3.55e-10 ***

math -0.006236 0.002492 -2.502 0.0124 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for Negative Binomial(1.0473) family taken to be 1)

Null deviance: 431.67 on 313 degrees of freedom

Residual deviance: 358.87 on 309 degrees of freedom

AIC: 1740.3

Number of Fisher Scoring iterations: 1

Observations: The fitted model estimates that students in the General programme are expected
to miss exp(+1.253) = 3.5 times more days of school compared to students in the Vocational pro-
gramme, and exp(+0.425) = 1.52 times more days of school compared to the Academic programme.
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Both of these comparisons are highly significant. Female students are estimated to miss an expected
exp(+0.211) = 1.2 times more days of school compared to male students, but this comparison is only
borderline significant. A 10-point increase in maths scores is associated with a exp(−0.06) = 0.94 times
reduction in the expected days of absence from school, with this effect being rather significant. Finally,
the estimated negative-binomial dispersion parameter of 1.0473 is much smaller than ∞, reflecting
the strong overdispersion exhibited by the data. That is, even after conditioning on the explanatory
variables, the variability in number of missed days is much larger than what a Poisson model would
predict.

Indeed, fitting the standard Poisson model to the same dataset gives:

fit0 = glm(daysabs∼gender+prog+math, family=poisson)

summary(fit0)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.7594786 0.0637731 43.270 < 2e-16 ***

gendermale -0.2424762 0.0467765 -5.184 2.18e-07 ***

progAcademic -0.4260327 0.0567308 -7.510 5.92e-14 ***

progVocational -1.2707199 0.0779143 -16.309 < 2e-16 ***

math -0.0069561 0.0009354 -7.437 1.03e-13 ***

Observations: We see that while the parameter estimates are all similar, the standard errors are an
order of magnitude smaller and the p-values are far too significant. This is a consequence of the Poisson
model not handling the conditional overdispersion exhibited in the data.

1.5.6 Conway-Maxwell-Poisson regression models

An alternative model that can handle both overdispersion and underdispersion is the Conway-Maxwell-
Poisson (Conway & Maxwell, 1962). It has seen a recent resurgence in popularity ( > 1000 citations
since 2005).

There are two flavours of Conway-Maxwell-Poisson distributions:

1. Shmueli et. al (2005, CMP):

f (y;λ,ν) ∝ λy

(y!)ν
, y = 0,1,2, . . . ,

where λ is a latent rate parameter, ν ≥ 0 is a dispersion parameter
ν < 1 ⇒ overdispersion
ν = 1 ⇒ Poisson
ν > 1 ⇒ underdispersion
No closed form expression for the mean or variance.
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2. Huang (2017, CMPµ):

f (y;µ,ν) ∝
λ(µ,ν)y

(y!)ν
, y = 0,1,2, . . . ,

where µ is the mean, ν ≥ 0 is a dispersion parameter
ν < 1 ⇒ overdispersion
ν = 1 ⇒ Poisson
ν > 1 ⇒ underdispersion
No closed form expression for the variance.

Example (6. Number of takeover bids). A dataset from Cameron & Johansson (1997) gives the number
of bids received by 126 US firms that were successful targets of tender offers during the period 1978-85,
along with the following set of explanatory variables:

• Defensive actions taken by management of target firm: indicator variable for legal defense by
lawsuit (leglrest), proposed changes in asset structure (rearest), proposed change in owner-
ship structure (finrest) and management invitation for friendly third-party bid (whtknght).

• Firm-specific characteristics: bid price divided by price 14 working days before bid (bidprem),
percentage of stock held by institutions (insthold), total book value of assets in billions of dollars
(size) and book value squared (size2).

• Intervention by federal regulators: an indicator variable for Department of Justice intervention
(regulatn).

A key feature of the dataset is that it exhibits strong underdispersion after accounting for the ex-
planatory variables. We can fit a CMPµ log-linear regression model to these data, accounting for this
underdispersion, using the mpcmp package:

library(mpcmp)

data(takeoverbids)

attach(takeoverbids)

fit1 = glm.cmp(numbids∼leglrest+rearest+finrest+whtknght+
bidprem+insthold+size+sizesq+regulatn)

summary(fit1)

Linear Model Coefficients:

Estimate Std.Err Z value Pr(>|z|)

(Intercept) 0.989630 0.435366 2.273 0.023020 *

leglrest 0.267879 0.122873 2.180 0.029248 *

rearest -0.173177 0.154779 -1.119 0.263197

finrest 0.067744 0.174403 0.388 0.697693

whtknght 0.481281 0.131721 3.654 0.000258 ***

bidprem -0.684822 0.307627 -2.226 0.026005 *

19



insthold -0.367886 0.346799 -1.061 0.288780

size 0.179325 0.047627 3.765 0.000166 ***

sizesq -0.007582 0.002485 -3.052 0.002276 **

regulatn -0.037569 0.130303 -0.288 0.773101

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for Mean-CMP estimated to be 1.752)

Model interpretation: For example, “A firm that engaged in a legal defense by lawsuit is estimated
to have exp( ) = 1.31 times as many number of bids than a comparable firm that did not. The
corresponding z-statistic is , which is significant at the 5% level”.

The estimated dispersion parameter of 1.752 > 1 reflects a moderate level of underdispersion in the
data.

Indeed, fitting the standard Poisson model to the same dataset gives:

fit0 = glm(numbids∼leglrest+rearest+finrest+whtknght+
bidprem+insthold+size+sizesq+regulatn, family=poisson)

summary(fit0)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.986060 0.533920 1.847 0.06477 .

leglrest 0.260146 0.150959 1.723 0.08484 .

rearest -0.195660 0.192631 -1.016 0.30976

finrest 0.074030 0.216522 0.342 0.73242

whtknght 0.481382 0.158870 3.030 0.00245 **

bidprem -0.677696 0.376737 -1.799 0.07204 .

insthold -0.361991 0.424329 -0.853 0.39361

size 0.178503 0.060022 2.974 0.00294 **

sizesq -0.007569 0.003122 -2.425 0.01532 *

regulatn -0.029439 0.160568 -0.183 0.85453

Here, the Poisson model gives similar parameter estimates, but the standard errors are slightly larger
and the p-values are slightly weaker, reflecting the fact that the Poisson model does not account for the
conditional underdispersion in this dataset.

1.5.7 Model diagnosis via Probability Inverse Transforms

Residual plots from count regression models exhibit banding artifacts due to the discreteness of the
response. Instead of the usual residual plots, we can instead look at probability inverse transform
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(PIT) plots.

Recall that for a (continuous) random variable Y coming from some (cumulative) distribution F, we
have F(Y ) ∼Uniform(0,1). Thus, if a fitted model is in fact a good fit to the data, then F̂(Y ) ≈Uniform(0,1).

Example. (6. Number of bids, continued) For the Poison fitted model, the fitted cumulative probabili-
ties F̂(Yi) are given by

PIT = ppois(numbids, fit0$fitted)

PIT

[1] 0.48651696 0.27185769 0.36570378 0.66622916 0.65690769 0.84017572

[7] 0.72357890 0.71121364 0.81054462 0.31845063 0.73615084 0.69617021

...

[121] 0.91543884 0.96590461 0.79658764 0.83721443 0.40119278 0.07639473

If the fitted Poisson model is adequate, then these probabilities should resemble a random sample
of 126 observations from a Uniform(0,1). We can compare the histogram of the PITs from the fitted
Poisson model to the fitted CMPµ model (using the built-in PIT plots from the mpcmp package for the
latter):

par(mfrow=c(1,2))

hist(PIT, freq=F, main="PIT␣for␣Poisson")
histcompPIT(fit1)
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The CMP-PIT plot is much closer to uniformity, indicating that it is the better fit of the two models. The
Poison PIT exhibits a clear ∩ shape, which reflects the data not exhibiting enough “small” or “large”
counts as predicted by the Poisson model due to underdispersion.
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2 GLMs with nonparametric mean functions

R libraries and functions used in this chapter include:

library(mgcv) # cross-validation fitting of nonparametric splines

library(rpart) # source of kyphosis dataset

gam{mgcv} # fitting generalized additive models

plot{mgcv} # plotting function for gam objects

Parametric mean models are useful for relatively simple, easily interpretable analyses of data. They
are particularly valuable in biological, engineering and agricultural contexts, where explicit treatment
effects, or covariate effects, are of interest. The following should be familiar by now:

• in a linear model, E(Y |X) = β0 + β1x1 + . . . + βpxp, we interpret βj as the change in the expected
response associated with a unit increase in xj (fixing all other covariates)

• in a log-linear model, E(Y |X) = exp(β0 +β1x1 +. . .+βpxp), we interpret exp(βj) as the multiplicative
change in the expected response associated with a unit increase in xj (fixing all other covariates)

• in a logistic model, logit(p) = β0 +β1x1 + . . .+βpxp, we interpret βj as the change in the log-odds of
success associated with a unit increase in xj (fixing all other covariates)

Of course, parametric models can be made more flexible by including non-linear terms in the X matrix,
such as:

• polynomial effects, e.g. XT β = β0 + β1x+ β2x
2 + . . .

• transformation of covariates, e.g. XT β = β0 + β1 log(x) + . . .

• interaction effects, e.g. XT β = β0 + β1x1 + β2x2 + β12x1x2 + . . ..

These non-linear effects can be combined with non-linear link functions to obtain a (very) wide range
of models. However, the specific parametric form of the terms in X and the specific form of the link function
have to be chosen by the data analyst explicitly.

Sometimes the link function and/or terms in the X matrix can be chosen on theoretical grounds. For
example, if the responses are random variables governed by a rate parameter, then it often sensible
to use the log-link so that we can speak about multiplicative changes in the rate. It is also sensible
to think of certain covariates such as dosages and exposure times as being inherently multiplicative in
magnitude, so that it would be natural to include log2(dose) or log2(exp.time) in the X matrix. However,
there are often scenarios in which no specific form for the mean model stands out a priori.

Example (7. LIDAR data). Ruppert, Wand & Carroll (2003) describe a light detection and ranging
(LIDAR) dataset in which the responses (Y ) are the log-ratios of received light from two laser sources
and the covariate (x) is the distance travelled before the light is reflected back to its source. The data
are plotted below.
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Comments: We see that mean of the log-ratios remains fairly flat as the distance increases to around
550 units, after which there appears to be a sudden drop-off in the mean. Such a highly non-linear
trend is difficult to model adequately with a relatively simple parametric model.

In additional to the non-linear trend, the variances also seem to increase dramatically as the mean be-
comes more negative. This makes sense because laser signals not only get weaker over longer distances,
but they are also expected to get noisier. We can handle non-constant variances using GLMs, so that
should not concern us too much at this stage. The negative values might be a concern though, if we use
gamma or inverse-gaussian families...

When the trends in the data are difficult to model with a relatively simple parametric model, we would
like to let the data “speak for themselves” in a nonparametric and automated way. This motivates us to
consider scatterplot smoothing, or nonparametric regression.

2.1 Nonparametric regression

We are all familiar with one method of nonparametric regression in the form of a LOWESS (locally
weighted scatterplot smoothing) smoother. LOWESS smoothers are closely related to kernel smoothers
and both estimate the conditional mean E(Y |X) at each X by a (weighted) average of all data points in
some neighbourhood of X. The size of the neighbourhood around each X is called the bandwidth (or
window size) and plays a crucial role in the determining relative wiggliness of the fitted curve:
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For noisier data, a larger bandwidth is required to get a cleaner signal. However, for less noisy data, an
overly wide window will oversmooth the data and subtle fluctuations in the signal may be lost. If we do
not account for possible non-constant variance, we may very well undersmooth noisier sections of the
data and oversmooth more precise sections of the data. Since GLMs naturally account for non-constant
variances, it makes sense to develop nonparametric regression methods within the GLM framework. A
natural way to do this is via the roughness penalty approach of Green & Silverman (1994).

2.2 Nonparametric GLMs via roughness penalties

We first look at the simpler case with only one covariate x; we extend to two or more covariates a bit
later on.

Recall that GLMs are generated from an exponential family of distributions:

Yi |xi
ind∼ exp

{
yθi + c(θi)

e(φ)

}
d(y;φ) .

To obtain a more flexible GLM, we can replace the linear predictor θi = β0 + β1xi by simply

θi = g(xi) ,

where g is some smooth but otherwise unknown function of x. This implies that the mean curve is

E(Y |x) = µ(g(xi)) ,

also some smooth function in x.

2.2.1 How smooth is “smooth”?

If we attempt to find the best fit over all smooth functions g, the result is useless: it is always possible
to choose g sufficient wiggly (but still “smooth”) so that it essentially interpolates the data:
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We need some way of measuring the wiggliness of a function, so that we can penalize functions g that
are overly wiggly and favour simpler models that still provide adequate fits to the data.

Discuss: how might you quantify the wiggliness of a function?

The roughness penalty approach to nonparametric GLMs (Green & Silverman, 1994) is a natural way
to formulate the problem:

1. replace linear predictor β0 + β1x with smooth but arbitrary g(x).

2. connect mean response to g(x) via the natural (canonical) link of the underlying exponential
family:

E(Y |x) = µ(g(x))

• normal: µ(g(x)) = g(x), the identity link

• Poisson: µ(g(x)) = exp(g(x)), the log-link

• Bernoulli: µ(g(x)) = exp(g(x))/(1 + exp(g(x))), the logistic link.

3. estimate g by maximizing a penalized log-likelihood,

n∑
i=1

{Yig(xi)− c(g(xi))} −
1
2
λ

∫
{g ′′(x)}2dx ,

over all functions g that are twice continuously differentiable.

• as it turns out, the maximum penalized likelihood estimator ĝ ≡ ĝλ is necessarily a cubic
spline with knots at each xi

4. the estimated mean function is then given by

Ê(Y |x) = µ(ĝ(x)) .
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2.3 Fitting nonparametric GLMs in practice

The roughness penalty approach is mathematically elegant and leads automatically to a cubic spline
estimator of g. However, it is not computationally efficient to use in practice, because it places a knot at
each (unique) covariate value. This can pose a major computational challenge for larger sample sizes.

An alternative approach is to assume a cubic spline for g a priori and to choose only a handful of knot
locations, either manually or in a systematic way. A typical default is to choose 10 knots, equally spaced
between x(1) and x(n). Another common default is to use the deciles of x.

Another point of contention is the smoothing parameter λ, which determines the smoothnes of the
fitted model. Larger λs penalize more wiggly functions in favour of less wiggly functions.

Indeed, if λ→∞, we end up with g(x) = β0 + β1x, which leads to a classical parametric GLM. If λ→ 0,
we end up with essentially an interpolation of the data.

Interpolation may give the “best fit” to a dataset, but lacks predictive or inferential power, making the
fitted model rather useless! We want to choose the penalty parameter λ to obtain an adequate fit to the
data without overfitting.

2.3.1 Choosing smoothness via cross-validation

One of the most popular ways to choose the parameter λ is via cross-validation. The main idea behind
cross-validation involves three simple steps:

1. hide part of the data

2. fit a model using only the remaining data

3. see how well our fitted model explains the data we initially hid

We then select λ that performs the best under these three steps. This idea is closely related to dividing
data into training sets and testing sets in computer science and machine learning.

In many software packages, the smoothness parameter λ is not explicitly computed. Rather, a related
parameter called the (equivalent) degrees of freedom is computed. This can be interpreted as a measure
of how smooth a fitted ĝ is compared to a polynomial fit. There is a one-to-one relationship between λ

and the degrees of freedom.

Example (8. Kyphosis in children). 81 children who have had corrective spinal surgery were followed
up to see if kyphosis (a type of deformation) was present after the operation. We are interested in how
the incidence rate of developing kyphosis changes with the age of children. The data are plotted below.
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A quick look at the data suggests that a logistic model may not be appropriate for these data. Instead,
we may consider a nonparametric binary GLM. That is,

P (kyphosis|Age) =
exp(g(Age))

1 + exp(g(Age))
,

where g(Age) is some arbitrary, smooth function of Age. Typically, an intercept term is explicitly in-
cluded in the model,

P (kyphosis|Age) =
exp(β0 + g(Age))

1 + exp(β0 + g(Age))
,

so that g(Age) is some arbitrary, smooth function of Age centred around 0. This does not change the
model, but makes things a bit easier to interpret.

To fit this model in R, we can use the gam function in the mgcv package. The kyphosis dataset comes
from the rpart package.

library(rpart)

data(kyphosis)

attach(kyphosis)

library(mgcv)

fit.1 = gam(Kyphosis ∼s(Age), family=binomial)

Here, s(·) tells R that you want a “smooth” fit in Age. The gam function in the mgcv package automati-
cally chooses the number of knots, knot locations and the smoothness, generally by cross-validation.

To see the fitted ĝ function, we can use the plot command:

plot(fit.1)
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Here, the 2.22 is the equivalent degrees of freedom of the fit, as chosen by cross-validation. This tells us
that the estimated ĝ has complexity somewhere between a quadratic and a cubic polynomial. Note that
ĝ is itself a piecewise cubic polynomial with certain continuity constraints, but its overall “complexity”
is 2.22.

The two sets of dotted lines are (simultaneous) ±2 × se confidence bands for ĝ. The confidence band
(almost) includes 0 across all Ages, so we might be able to conclude that Age is actually not a significant
predictor for kyphosis. We can look at the summary of our fitted model:

summary(fit.1)

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.509 0.316 -4.776 1.78e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:

edf Ref.df Chi.sq p-value

s(Age) 2.223 2.806 6.693 0.0714 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.0759 Deviance explained = 11.6%
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The smooth function in Age is borderline significant, so we should keep it. We can add the fitted
probability curve to our plot of the data:

lines(sort(Age), fit.1$fitted[order(Age)])
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When we fit a nonparametric GLM our answer to questions like “How is kyphosis incidence associated
with Age of children?” is just the above plot. Having an extremely flexible modelling framework comes
at the cost of longer being able to give simple interpretations like “a unit increase in x is associated
with...”

2.4 More than one covariate

There are various ways to extend the nonparametric GLM approach to scenarios with two or more
covariates, although some of these models can be quite opaque in their interpretations. It suffices to
consider three covariates and how to replace the linear predictor β0 + β1x1 + β2x2 + β3x3 by a “smooth”
function of x1,x2 and x3.

2.4.1 Generalized Additive Models

Generalized additive models (Hastie & Tibshirani, 1990) replace the linear predictor with a sum of
arbitrary, smooth univariate functions:

β0 + β1x1 + β2x2 + β3x3 =⇒ β0 + g1(x1) + g2(x2) + g3(x3)
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where g1 is an arbitrary, smooth function of x1, g2 is an arbitrary, smooth function of x2 and g3 is an
arbitrary, smooth function of x3. The effects of x1,x2 and x3 are additive on the canonical scale, hence
the name of these kinds of models.

Generalization to more than three covariates is immediate:

β0 + β1x1 + β2x2 + . . .+ βpxp =⇒ β0 + g1(x1) + g2(x2) + . . . gp(xp)

Example (8. Kyphosis, continued). In addition to Age, two other covariates were recorded, namely,
Number: the number of vertabrae involved, and Start: the position of the top-most vertebra operated
on. We can fit an additive nonparametric binary GLM to these data using all three covariates. Formally,
this model is

P (kyphosis|Age) =
exp{β0 + g1(Number) + g2(Start) + g3(Age)}

1 + exp{β0 + g1(Number) + g2(Start) + g3(Age)}
,

We can fit this model using the gam function in the mgcv package, paying special attention to the fact
that we only have 8 unique values of Number and 16 unique values of Start:

fit.3 = gam(Kyphosis ∼s(Number,k=8) + s(Start, k=16) + s(Age), family=binomial)

The additional k argument here tells R that we cannot exceed k = 8 degrees of freedom for the smooth
function in Number and k = 16 degrees of freedom for the smooth function in Start.

We can look at our fitted ĝ1(Number), ĝ2(Start) and ĝ3(Age) functions using the plot command:

plot(fit.3, pages=1)
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Fitted g1(Number), g2(Start) and g3(Age)
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We see that the effect of Number is almost exactly linear on the log-odds scale. The effects of Start
and Age have complexity somewhere between a quadratic and cubic. As usual, each effect must be
interpreted whilst fixing the other covariates.

2.4.2 Arbitrary nonparametric GLMs

Arbitrary nonparametric GLMs are obtained by replacing the linear predictor with a completely arbi-
trary but smooth multivariate function of all covariates:

β0 + β1x1 + β2x2 + β3x3 =⇒ β0 + g(x1,x2,x3) ,

where g is an aribtrary smooth function of x1,x2 and x3. These are (almost) computationally impossible
to fit in general, and perhaps even more impossible to interpret.

2.4.3 Partially-linear models

Partially linear, or semiparametric, GLMs assume that the effect of some covariates can be modeled
with simple parametric forms, with the effects of other covariates having arbitrary smooth forms:

β0 + β1x1 + β2x2 + β3x3 =⇒ β0 + β1x1 + g2(x2) + g3(x3) ,

or
β0 + β1x1 + β2x2 + β3x3 =⇒ β0 + β1x1 + β2x2 + g3(x3) ,

or
β0 + β1x1 + β2x2 + β3x3 =⇒ β0 + β1x1 + g(x2,x3) .

Partially-linear GLMs are somewhere between fully parametric and generalized additive or abitrary
nonparametric GLMs. They also have interpretability that is between the two extremes. For example,
in the first case, β1 is the change (on the canonical scale) in the mean response associated with a unit
increase in x1, fixing all the other covariates.

A useful rule of thumb is to consider arbitrary smooth fits for covariates that are not of primary interest
(e.g. ambient temperature, weight of patient...), but try to use simple parametric forms for the covariate
effects that are of primary interest (e.g. treatment effects, dosage effects...). This way, you can examine
the effects of the things you want to look at, whilst adequately adjusting for systematic effects due to
nuisance variables.

Example (8. Kyphosis, continued). We can try fitting the following partially-linear binary model to the
data:

P (kyphosis|Age) =
exp{β0 + β1Number + g2(Start) + g3(Age)}

1 + exp{β0 + +β1Number + g2(Start) + g3(Age)}
.
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> fit.sp = gam(Kyphosis ∼Number + s(Start, k=16) + s(Age), family=binomial)

> summary(fit.sp)

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.5926 1.1464 -3.134 0.00173 **

Number 0.3333 0.2324 1.434 0.15150

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:

edf Ref.df Chi.sq p-value

s(Start) 2.025 2.531 9.957 0.0131 *

s(Age) 2.209 2.790 6.675 0.0711 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.355 Deviance explained = 39.4%

From the summary output, we see that given the smooth terms in Start and Age are in the model, the
covariate Number is no longer significant. We can simplify the model by dropping Number, but we
should probably keep Age in the model. The most important covariate is the starting vertebra, with an
estimated effect that looks like this on the log-odds scale:
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For children who have spinal surgery starting on higher vertebra (vertebrae 1–5), the odds of devel-
oping kyphosis is estimated to be around exp(5) = 148 times higher than children who had surgery
starting on the lowest vertebra.
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2.5 Nonparametric regression models for counts

In a similar way, we can develop generalized additive and partially linear models for unbounded
counts.

Example (5. Class attendance, continued). If we were to ignore possible overdispersion, then we can
fit a partially linear model with main effects in gender and programme and a smooth function in math

scores via:

fit0 = gam(daysabs∼ gender+prog+s(math), family=poisson)

summary(fit0)

plot(fit0)

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.35894 0.05370 43.928 < 2e-16 ***

gendermale -0.23822 0.04762 -5.002 5.66e-07 ***

progAcademic -0.38975 0.05750 -6.778 1.22e-11 ***

progVocational -1.20888 0.07871 -15.360 < 2e-16 ***

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:

edf Ref.df Chi.sq p-value

s(math) 8.827 8.991 130.4 <2e-16 ***
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When using a conditional Poisson model, the smooth curve in maths scores looks overly complex. This
is because the data shows too much fluctuation relative to a Poisson model, and so the partially linear
model tries to account for this fluctuation by getting the mean curve closer to the observed values.
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If, instead, we consider a conditional negative-binomial response distribution, the fitted model looks
quite different:

fit1 = gam(daysabs∼gender + prog + s(math), family=nb)

summary(fit1)

plot(fit1)

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.4064 0.1731 13.904 < 2e-16 ***

gendermale -0.2109 0.1231 -1.713 0.0867 .

progAcademic -0.4245 0.1836 -2.313 0.0207 *

progVocational -1.2525 0.2016 -6.213 5.2e-10 ***

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:

edf Ref.df Chi.sq p-value

s(math) 1.001 1.001 6.136 0.0133 *
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The negative-binomial model allows for extra variability around the fitted mean, and so we don’t need
the mean function to follow the observed counts so closely. Interestingly, the cross-validated “best”
model is essentially a linear model in math scores, which coincides with our previous parametric anal-
ysis of the dataset.
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3 GLMs with nonparametric response distribution

R libraries and functions used in this chapter include:

library(gldrm)

gldrm{gldrm} #fitting GLMs with nonparametric response distributions

gldrmPIT{gldrm} #PIT plots for model diagnostics

Another, somewhat orthogonal, direction in which we can relax the parametric GLM is to allow the
conditional response distribution to be nonparametric. In all our examples, we could write the expo-
nential family in a linear canonical form,

f (y;θ) = exp {yθ + c(θ)}d(y)

where we have absorbed the given/known dispersion parameter φ into θ, c(θ) and d(y). The base mea-
sure d(y) can be viewed as some density dF(y) of a cumulative distribution F with respect to counting
measure (or Lesbegue measure for continuous exponential families). The mean of the distribution is
given by

µ =
∞∑
y=0

y exp{yθ + c(θ)}dF(y) = exp(c(θ))
∞∑
y=0

y exp{yθ}dF(y)

Hence, for a given mean µ > 0 and a given base measure F, the canonical parameter θ ≡ θ(µ,F) can be
defined as a function of both the mean µ and base measure F via the solution to

0 =
∞∑
y=0

(y −µ)exp{yθ}dF(y) , (3)

with the normalizing function c also being a function of µ and F via

c = − log
∞∑
y=0

exp{yθ(µ,F)}dF(y) (4)

Writing the model in this way allows us to view both the mean µ and the base measure F as parameters.
For count data, the mean itself is typically modelled as µ = exp(X⊤β) for some finite set of covariates
X, and so the mean-parameters β are finite-dimensional. On the other hand, the parameter space for
F is all distributions on N that have a cumulant generating function, and so is infinite-dimensional.
Indeed, writing GLMs in this form covers the class of all discrete GLMs, and if we are able to maximize
the likelihood over both β and F then we would have maximized over the space of all discrete GLMs!

Huang (2014) was able to show that this joint estimation is not only possible, but that little-to-no
information is lost when estimating β while also simultaneously estimating F! The key intuition behind
why this is achievable is that the mean µ and the base measure F in any GLM are in fact orthogonal
parameters. While various estimation methods for F can be used, one particularly attractive method
is to consider a histogram estimator that places probability mass only at the observed supports. This
choice is optimal in the sense that it maximizes the so-called empirical likelihood.

Joint estimation of both the mean model and response distribution can be done in R using the gldrm

package. GLDRM stands for “generalized linear density ratio models” because the linear canonical
exponential family is a special case of a density ratio model.

35



Example (5. Class attendance, continued). Instead of specifying a particular response distribution for
the number of absent days, such as the Poisson or negative-binomial, we can instead estimate it along
with the mean model via

fit.sp = gldrm(daysabs∼gender+prog+math, link="log")

fit.sp

Summary of gldrm fit

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.72318 0.17442 15.61 < 2e-16 ***

gendermale -0.21835 0.11680 -1.87 0.0625 .

progAcademic -0.42809 0.15845 -2.70 0.0073 **

progVocational -1.25891 0.18314 -6.87 3.5e-11 ***

math -0.00637 0.00236 -2.70 0.0073 **

We see that while the estimated parameters are again similar, the standard errors here are somewhere
between the negative-binomial fit and the Poisson fit to the data. This suggests that the data may be
distributed as neither of the two parametric models.

We can examine the goodness-of-fit of this semiparametric approach via PIT plots using the in-built
function

gldrmPIT(fit.sp)
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We see from the uniformity of these PIT plots that the estimated nonparametric base measure F has
been able to adapt to the response distribution very well. We can examine the shape of the estimated
response distributions at a few observations:
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fit.sp$mu[1]

[1] 5.339606

fit.sp$mu[10]

[1] 2.543572

fit.sp$mu[107]

[1] 15.13189

support = fit.sp$spt

fitted.Fs = fit.sp$fTiltMatrix

par(mfrow=c(1,3))

plot(support, fitted.Fs[1,], type="h", ylab = "fitted␣prob␣mass", xlab = "support")

plot(support, fitted.Fs[10,], type="h", ylab = "fitted␣prob␣mass", xlab = "support")

plot(support, fitted.Fs[107,], type="h", ylab = "fitted␣prob␣mass", xlab = "support")
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Example (6. Takeover bids, continued). Instead of specifying a particular response distribution for the
number of absent days, such as the Poisson or Conway-Maxwell-Poisson, we can instead estimate it
along with the mean model via

fit.sp = gldrm(numbids∼leglrest+rearest+finrest+whtknght+
bidprem+insthold+size+sizesq+regulatn, link="log")

fit.sp

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.16638 0.43465 2.68 0.0084 **
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leglrest 0.21650 0.12498 1.73 0.0859 .

rearest -0.37596 0.16625 -2.26 0.0256 *

finrest 0.14862 0.19772 0.75 0.4538

whtknght 0.49771 0.11840 4.20 5.2e-05 ***

bidprem -0.78438 0.30802 -2.55 0.0122 *

insthold -0.36539 0.33903 -1.08 0.2834

size 0.14963 0.06466 2.31 0.0224 *

sizesq -0.00634 0.00321 -1.98 0.0503 .

regulatn 0.03872 0.13563 0.29 0.7758

We see that both the estimated parameters and the standard errors are very similar to those from the
fitted Conway-Maxwell-Poisson model. This suggests that the CMP model may be adequate for the
dataset.
We can examine the goodness-of-fit of this semiparametric approach via PIT plots using the in-built
function

gldrmPIT(fit.sp)
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We see that the estimated nonparametric base measure F has been able to fit to the response distribution
as well as the parametrix CMP model. Finally, we can examine the shape of the estimated response
distributions at a few observations:

fit.sp$mu[54]

[1] 0.7049818

fit.sp$mu[18]

[1] 1.947666

fit.sp$mu[126]

[1] 4.662918
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support = fit.sp$spt

fitted.Fs = fit.sp$fTiltMatrix

par(mfrow=c(1,3))

plot(support, fitted.Fs[54,], type="h", ylab = "fitted␣prob␣mass", xlab = "support")

plot(support, fitted.Fs[18,], type="h", ylab = "fitted␣prob␣mass", xlab = "support")

plot(support, fitted.Fs[126,], type="h", ylab = "fitted␣prob␣mass", xlab = "support")
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Future work: combine nonparametric mean curves with nonparametric response distribution, i.e., dou-
bly nonparametric regression!
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